Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
EFSA J ; 21(2): e07822, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2274202

ABSTRACT

The epidemiological situation of SARS-CoV-2 in humans and animals is continually evolving. To date, animal species known to transmit SARS-CoV-2 are American mink, raccoon dog, cat, ferret, hamster, house mouse, Egyptian fruit bat, deer mouse and white-tailed deer. Among farmed animals, American mink have the highest likelihood to become infected from humans or animals and further transmit SARS-CoV-2. In the EU, 44 outbreaks were reported in 2021 in mink farms in seven MSs, while only six in 2022 in two MSs, thus representing a decreasing trend. The introduction of SARS-CoV-2 into mink farms is usually via infected humans; this can be controlled by systematically testing people entering farms and adequate biosecurity. The current most appropriate monitoring approach for mink is the outbreak confirmation based on suspicion, testing dead or clinically sick animals in case of increased mortality or positive farm personnel and the genomic surveillance of virus variants. The genomic analysis of SARS-CoV-2 showed mink-specific clusters with a potential to spill back into the human population. Among companion animals, cats, ferrets and hamsters are those at highest risk of SARS-CoV-2 infection, which most likely originates from an infected human, and which has no or very low impact on virus circulation in the human population. Among wild animals (including zoo animals), mostly carnivores, great apes and white-tailed deer have been reported to be naturally infected by SARS-CoV-2. In the EU, no cases of infected wildlife have been reported so far. Proper disposal of human waste is advised to reduce the risks of spill-over of SARS-CoV-2 to wildlife. Furthermore, contact with wildlife, especially if sick or dead, should be minimised. No specific monitoring for wildlife is recommended apart from testing hunter-harvested animals with clinical signs or found-dead. Bats should be monitored as a natural host of many coronaviruses.

2.
PLoS Pathog ; 17(11): e1010068, 2021 11.
Article in English | MEDLINE | ID: covidwho-1518369

ABSTRACT

Mink, on a farm with about 15,000 animals, became infected with SARS-CoV-2. Over 75% of tested animals were positive for SARS-CoV-2 RNA in throat swabs and 100% of tested animals were seropositive. The virus responsible had a deletion of nucleotides encoding residues H69 and V70 within the spike protein gene as well as the A22920T mutation, resulting in the Y453F substitution within this protein, seen previously in mink. The infected mink recovered and after free-testing of 300 mink (a level giving 93% confidence of detecting a 1% prevalence), the animals remained seropositive. During further follow-up studies, after a period of more than 2 months without any virus detection, over 75% of tested animals again scored positive for SARS-CoV-2 RNA. Whole genome sequencing showed that the viruses circulating during this re-infection were most closely related to those identified in the first outbreak on this farm but additional sequence changes had occurred. Animals had much higher levels of anti-SARS-CoV-2 antibodies in serum samples after the second round of infection than at free-testing or during recovery from initial infection, consistent with a boosted immune response. Thus, it was concluded that following recovery from an initial infection, seropositive mink were readily re-infected by SARS-CoV-2.


Subject(s)
COVID-19/veterinary , COVID-19/virology , Mink/immunology , Mink/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , Farms , Follow-Up Studies , Humans , Mutation , Pharynx/virology , Phylogeny , RNA, Viral , Reinfection/virology , Whole Genome Sequencing
3.
EFSA J ; 19(3): e06459, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1115388

ABSTRACT

American mink and ferret are highly susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but no information is available for other mustelid species. SARS-CoV-2 spreads very efficiently within mink farms once introduced, by direct and indirect contact, high within-farm animal density increases the chance for transmission. Between-farm spread is likely to occur once SARS-CoV-2 is introduced, short distance between SARS-CoV-2 positive farms is a risk factor. As of 29 January 2021, SARS-CoV-2 virus has been reported in 400 mink farms in eight countries in the European Union. In most cases, the likely introduction of SARS-CoV-2 infection into farms was infected humans. Human health can be at risk by mink-related variant viruses, which can establish circulation in the community, but so far these have not shown to be more transmissible or causing more severe impact compared with other circulating SARS-CoV-2. Concerning animal health risk posed by SARS-CoV-2 infection the animal species that may be included in monitoring plans are American mink, ferrets, cats, raccoon dogs, white-tailed deer and Rhinolophidae bats. All mink farms should be considered at risk of infection; therefore, the monitoring objective should be early detection. This includes passive monitoring (in place in the whole territory of all countries where animals susceptible to SARS-CoV-2 are bred) but also active monitoring by regular testing. First, frequent testing of farm personnel and all people in contact with the animals is recommended. Furthermore randomly selected animals (dead or sick animals should be included) should be tested using reverse transcriptase-polymerase chain reaction (RT-PCR), ideally at weekly intervals (i.e. design prevalence approximately 5% in each epidemiological unit, to be assessed case by case). Suspected animals (dead or with clinical signs and a minimum five animals) should be tested for confirmation of SARS-CoV-2 infection. Positive samples from each farm should be sequenced to monitor virus evolution and results publicly shared.

4.
Euro Surveill ; 26(5)2021 02.
Article in English | MEDLINE | ID: covidwho-1067624

ABSTRACT

In June-November 2020, SARS-CoV-2-infected mink were detected in 290 of 1,147 Danish mink farms. In North Denmark Region, 30% (324/1,092) of people found connected to mink farms tested SARS-CoV-2-PCR-positive and approximately 27% (95% confidence interval (CI): 25-30) of SARS-CoV-2-strains from humans in the community were mink-associated. Measures proved insufficient to mitigate spread. On 4 November, the government ordered culling of all Danish mink. Farmed mink constitute a potential virus reservoir challenging pandemic control.


Subject(s)
Animals, Wild/virology , COVID-19/epidemiology , COVID-19/veterinary , Disease Outbreaks/veterinary , Disease Reservoirs/veterinary , Disease Transmission, Infectious/veterinary , Mink/virology , Pandemics/veterinary , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Viral Zoonoses/transmission , Animals , COVID-19/transmission , COVID-19/virology , COVID-19 Nucleic Acid Testing , Denmark/epidemiology , Disease Outbreaks/statistics & numerical data , Disease Reservoirs/virology , Farms , Genes, Viral , Humans , Incidence , Polymerase Chain Reaction , Public Health , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/classification , Viral Zoonoses/virology , Whole Genome Sequencing , Zoonoses/transmission , Zoonoses/virology
5.
Animals (Basel) ; 11(1)2021 Jan 12.
Article in English | MEDLINE | ID: covidwho-1024522

ABSTRACT

SARS-CoV-2 infection is the cause of COVID-19 in humans. In April 2020, SARS-CoV-2 infection in farmed mink (Neovision vision) occurred in the Netherlands. The first outbreaks in Denmark were detected in June 2020 in three farms. A steep increase in the number of infected farms occurred from September and onwards. Here, we describe prevalence data collected from 215 infected mink farms to characterize spread and impact of disease in infected farms. In one third of the farms, no clinical signs were observed. In farms with clinical signs, decreased feed intake, increased mortality and respiratory symptoms were most frequently observed, during a limited time period (median of 11 days). In 65% and 69% of farms, virus and sero-conversion, respectively, were detected in 100% of sampled animals at the first sampling. SARS-CoV-2 was detected, at low levels, in air samples collected close to the mink, on mink fur, on flies, on the foot of a seagull, and in gutter water, but not in feed. Some dogs and cats from infected farms tested positive for the virus. Chickens, rabbits, and horses sampled on a few farms, and wildlife sampled in the vicinity of the infected farms did not test positive for SARS-CoV-2. Thus, mink are highly susceptible to infection by SARS-CoV-2, but routes of transmission between farms, other than by direct human contact, are unclear.

6.
Emerg Infect Dis ; 27(2): 547-551, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-934448

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 has caused a pandemic in humans. Farmed mink (Neovison vison) are also susceptible. In Denmark, this virus has spread rapidly among farmed mink, resulting in some respiratory disease. Full-length virus genome sequencing revealed novel virus variants in mink. These variants subsequently appeared within the local human community.


Subject(s)
COVID-19/transmission , Disease Transmission, Infectious/veterinary , Mink/virology , SARS-CoV-2/genetics , Viral Zoonoses/transmission , Animals , COVID-19/veterinary , COVID-19/virology , Denmark/epidemiology , Farms , Humans , Viral Zoonoses/virology
SELECTION OF CITATIONS
SEARCH DETAIL